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Abstract

A coupled level set-projection method on quadrilateral grids is developed for piezoelectric ink jet simulations. The

model is based on the Navier–Stokes equations for incompressible two-phase flows in the presence of surface tension

and density jump across the interface separating ink and air, coupled to an electric circuit model which describes the driv-

ing mechanism behind the process, and a macroscopic contact model which describes the air–ink–wall dynamics. We

simulate the axisymmetric flow on quadrilateral grids using a combination of second-order finite difference projection

methods to solve the fluid equations and level set methods to track the air/ink interface. To improve the mass conserva-

tion performance of the coupled level set method, a bicubic interpolation is combined with the Fast Marching Method

for level set re-initialization on quadrilateral grids. The numerical method is used to analyze the motion of the interface,

droplet pinch off, formation of satellites, effect of nozzle geometry on droplet size and motion, and the dynamics for

droplet landing. The simulations are faithful to the dimensions and physics of a particular class of inkjet devices.

� 2005 Elsevier Inc. All rights reserved.
1. Problem description and previous work

The goal of this work is to develop a numerical simulation tool for fluid flow phenomena associated with

ink jet printers. The physical goal is to analyze the motion of the boundary, pinch off of droplets, formation
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of satellites, and the effect of nozzle geometry on ink ejection size and motion. In order to do so, the under-

lying algorithms should be able to faithfully discretize non-rectangular geometries, accurately capture

two-phase flows through an axisymmetric nozzle, handle complicated topological change of ink droplets,

conserve mass to a good approximation, and couple to external models which simulate the ink cartridge,

supply channel, pressure chamber, and piezoelectric actuator.
This paper is the second of two papers on coupling level set methods to projection methods for ink jet

simulations. In previous work [32], an obstacle cell method was used together with a first order in time,

second order in space projection method with first order reinitialization scheme to study ink jet dynamics

near the printhead. In this paper, we present a coupled level set projection method on quadrilateral grids.

The new components of this work include:

� We develop projection methods on quadrilateral grids to faithfully discretize the body geometry. We

provide relevant equations of motion and details on how to transform these equations from the physical
space to the computational space in Section 2.

� We develop a second order accurate in space and time scheme in this quadrilateral body-fitted setting.

� We derive a transformed viscosity term for a quadrilateral grid in an axisymmetric coordinate system.

� We extend Chopp�s [9] bicubic reinitialization scheme to quadrilateral meshes to provide a combined bic-

ubic interpolation and Fast Marching Method for reinitialization, and demonstrate its increased fidelity

for mass conservation.

� We extend our simulations beyond the near printhead field and examine the full cycle from ejection,

through bubble breakup, on through to droplet landing, and provide detailed comparison with experi-
mental results.

In Fig. 1, we show the typical structure of an ink jet nozzle; the actual geometry is axisymmetric and is

not drawn to scale. Ink is stored in a bath reservoir (cartridge), and driven through the nozzle in response to

a dynamic pressure at the lower boundary. The dynamics of incompressible flow through the nozzle,

coupled to surface tension effects along the ink–air interface and boundary conditions along the wall,
Ink 
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Fig. 1. The cross section view of an ink jet nozzle.
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act to determine the shape of the interface as it moves. A negative pressure at the lower boundary induces a

backflow which causes a bubble to pinch off.

Our model assumes the axisymmetric Navier–Stokes equations for two-phase immiscible incompressible

flow with surface tension and density jumps across an infinitely thin immiscible interface separating ink and

air, each with constant viscosity and density. A contact model is devised to capture air–ink–wall dynamics.
Several different numerical simulations of the ink jet process have been performed in recent years, see,

for example, Aleinov et al. [1], Sou et al. [26], and Yu et al. [32]. In our approach, we employ second-order

finite difference projection methods to solve the fluid flow equations, level set methods to capture the mo-

tion of the fluid interface, and body-fitted quadrilateral grids to faithfully discretize the nozzle geometry. A

large number of background references for this approach are given in [32]; here, we briefly mention the ori-

ginal paper on projection methods for incompressible flow by Chorin [10], second-order Godunov-type

improvements by Bell et al. [6], the finite-element approximate projection by Almgren et al. [2], and the

extension of these techniques to quadrilateral grids (see, for example, Bell et al. [5]) and to moving quad-
rilateral grids (see Trebotich and Colella [31]). On the interface tracking side, level set methods, introduced

in Osher and Sethian [16], rely in part on the theory of curve and surface evolution given in Sethian [19,20]

and on the link between front propagation and hyperbolic conservation laws discussed in Sethian [21]; these

techniques recast interface motion as a time-dependent Eulerian initial value partial differential equation.

For details about projection methods and their coupling to level set methods, see Almgren et al. [2,4], Bell

et al. [6], Bell and Marcus [7], Chang et al. [8], Chorin [10], Puckett et al. [17], Sussman and Smereka [28],

Sussman et al. [27,29], and Zhu and Sethian [33].

The application of finite difference techniques to complex geometry must account for boundary condi-
tions. Methods include the obstacle cell [13] method, use of a boundary-embedded Cartesian grid, or a

body-fitted quadrilateral grid. The method of obstacle cell results in the staircase pattern at the slant part

of the nozzle wall [32]. The boundary-embedded Cartesian grid is very powerful for simulations of combus-

tion or atmospheric flows, however it leads to the ‘‘cut cell’’ problem in which very tiny boundary cells are

generated; here, flux-redistribution has to be performed. The major advantage of body-fitted quadrilateral

grids for ink jet simulations is that the nozzle wall is a grid line and, hence, it facilitates the implementation

of contact models. For details about the boundary-embedded Cartesian grid and body-fitted quadrilateral

grid, see Almgren [3] and references cited there.
Several subsections describing ink jet dynamics, piezoelectric performance, and contact models are

abbreviated versions taken from [32]; we refer the interested reader to that work for further details.
2. Level set formulation

2.1. Governing equations

The two-phase flow consists of fluid #1 (ink) and #2 (air) whose densities and viscosities are denoted

respectively by qi, li, i = 1, 2. The governing equations consist of the continuity equation and Navier–

Stokes equations:
r � u ¼ 0; ð1Þ

ou

ot
þ ðu � rÞu ¼ � 1

qð/Þrp þ
1

qð/ÞRer � ð2lð/ÞDÞ �
1

qð/ÞWe jð/Þdð/Þr/: ð2Þ
In the above,
D ¼ 1
2
½ruþ ðruÞT� ð3Þ
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is the rate of deformation tensor. The density ratio, viscosity ratio, Reynolds number, and Weber number

are defined by
qð/Þ ¼
1 if / P 0;

q2=q1 if / < 0;

�

lð/Þ ¼
1 if / P 0;

l2=l1 if / < 0;

�

Re ¼ q1UL
l1

;

We ¼ q1U
2L

r
;

ð4Þ
where U is a velocity scale, L is a length scale, and r is the surface tension coefficient.

Since the interface moves with the fluid, the evolution of the level set is governed by
o/
ot
þ u � r/ ¼ 0: ð5Þ
We choose this form because the interface moves advectively.

Since Eqs. (1) and (2) are expressed in terms of the vector notation, they assume the same form in Carte-

sian coordinates and axisymmetric coordinates.
2.2. Equations on quadrilateral meshes

We are interested in computing in reasonably complex geometries, in which rectangular grids may not

work well. Fig. 7 in Yu et al. [32] shows the ladder case pattern at the shrinking part of the nozzle as a result

of the rectangular finite difference grid. Instead, we prefer to build finite differences schemes on a body-

fitted geometry generated by a quadrilateral grid; in addition, we wish to extend previous work to axisym-

metric cases. To do so, we reformulate the governing equations (obtained by following [5,31]), with some

additional care taken to transform the viscosity and surface tension terms to the quadrilateral axisymmetric
setting.

Suppose we have a continuous transformation U which maps the grid points in a computational space

N = (n,g) to the physical space X = (r,z) (see Fig. 2):
X ¼ UðNÞ: ð6Þ
ξ 
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Fig. 2. Coordinate transformation.
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The Jacobian and the transformation matrix (metric) are defined by
J ¼ g detrNU ¼ g det
rn rg
zn zg

� �
;

T ¼ g�1J ½rNU��1 ¼
zg �rg
�zn rn

� �
;

ð7Þ
where g = 2pr for the axisymmetric coordinate system. For the convenience of future discussion, we also

define the transformed convection velocity as
�u ¼ gTu: ð8Þ

The above definitions for axisymmetric coordinate systems can be easily extended to the two-dimen-

sional Cartesian system by the following substitution
r ! x; z ! y; g ! 1: ð9Þ

For our ink jet simulations, a body-fitted quadrilateral grid in the physical space is shown in Fig. 3. The

corresponding uniform square grid system in the computational space is shown in Fig. 4. We first note that

the grid lines in the physical space are not orthogonal. An almost orthogonal quadrilateral system would
facilitate the implementation of boundary conditions and contact models. Nonetheless, the grid in Fig. 3 is

easy to generate, and adequately (see below) handles the boundary conditions. The algorithms developed

below work for any rectangular grid systems; for our ink jet simulations, we use the uniform square grid

shown in Fig. 4 in the computational space.

In the following subsections, we show the derivation of the transformed viscosity term and surface

tension term in the computational space.
z

r 

Fig. 3. A boundary-fitted quadrilateral grid for ink jet simulation.
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Fig. 4. The uniform square grid in the computational space.
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2.2.1. Axisymmetric quadrilateral viscosity term

The complexity of the transformed viscosity term comes from the h-related tensor component of the

velocity gradient, which in the diadic form is
ru ¼ ðurerer þ vzezez þ uzezer þ vrerezÞ þ
u
r
eheh: ð10Þ
The r and z-related tensor components can be transformed by following Bell et al. [5]
ru� u
r
eheh ¼ gJ�1TTrNu: ð11Þ
The h-related component turns out to not need any sort of special transformation, since we have
that
r � lð/Þ u
r
eheh

� �
¼ � u

r2
er: ð12Þ
By combining (10)–(12) and the definition of the rate of deformation tensor, we obtain the viscosity term

on quadrilateral grids
1

qð/ÞRer � ð2lð/ÞDÞ ¼
1

qð/ÞRe J�1rN � ½g2J�1lð/ÞðTTTrNuþ ðTTTrNuÞTÞ� �
2lð/Þu

r2
er

� �
: ð13Þ
2.2.2. Axisymmetric quadrilateral curvature and surface tension terms

Since
jð/Þ ¼ r � r/
j r/ j

� �
¼ J�1rN � gT

TTrN/

j TTrN/ j

� �
; ð14Þ
the transformed surface tension term is easily obtained:
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� gdð/Þ
J 2qð/ÞWe

rN � gT
TTrN/

j TTrN/ j

� �
ðTTrN/Þ: ð15Þ
Combining (13)–(15), we obtain the transformed governing equations
ou

ot
þ J�1ð�u � rNÞu ¼ �

1

qð/ÞJ gT
TrNp þ ðViscosity termÞ þ ðSurface tensionÞ;

rN � �u ¼ 0;

o/
ot
þ J�1�u � rN/ ¼ 0;

ð16Þ
where the viscosity term is given in (13) and the surface tension term is given in (15).

We make several comments here. First, Eqs. (13)–(16) are derived for a quadrilateral grid in the axisym-

metric coordinate system; however, they can be used for two-dimensional flow problems if one neglects the

last term in (13) and uses the substitution (9). Second, one can easily check Eq. (13) by reducing the com-

putational space N = (n,g) to the physical space X = (r,z). For this case, the transformation matrix reduces

to the identity matrix and the Jacobian to g. Third, we note that $N and $NÆ are ‘‘matrix operators’’ while $
and $Æ are vector operators. When a vector operator is put in front of a vector quantity, it not only ‘‘oper-

ates’’ on the magnitude of the vector quantity but also on the direction. Here, we apply the matrix oper-
ators $N and $NÆ to scalars or matrices, and hence the ‘‘direction’’ is not relevant. Fourth, the

quadrilateral-grid algorithm is defined in terms of the Jacobian J and metric T. The elements in the metric

and the Jacobian are calculated using appropriate grid point locations. However, the algorithm does not

explicitly use the continuous mapping U. Only the grid point locations in the physical space are needed.

2.3. Boundary conditions and contact model

On solid walls, we assume that both the normal and tangential components of the velocity vanish (this
must be amended at the triple point). At both inflow and outflow, our formulation allows us to prescribe

either the velocity
u ¼ uBC ð17Þ

or the pressure boundary condition
p ¼ pBC;
ou

on
¼ 0; ð18Þ
where n denotes the unit normal to the inflow or outflow boundary.

To numerically simulate the ejection of ink droplets, one needs to prescribe a velocity or pressure at the

inflow to the nozzle. However, only the input voltage to the piezoelectric actuator is known. The equivalent

circuit model by Sakai [18] is employed to handle the problem. The equivalent circuit, which includes the

effect of ink cartridge, supply channel, vibration plate, and piezoelectric actuator, simulates the ink velocity

and pressure at nozzle inflow with a given dynamic voltage. By solving the equivalent circuit and the flow

equations in turn, one simulates a real ink jet. A typical driving voltage pattern and a typical inflow pres-

sure are as shown in Figs. 5 and 6. The driving voltage is such that the ink is first pulled back, pushed and
fired, and then pulled back to get ready for the next jetting. The inflow pressure shown in Fig. 6 reflects the

reaction of a typical nozzle-ink channel–actuator–cartridge system to the applied voltage. The pressure pat-

tern contains a higher frequency signal. It is basically the fundamental natural frequency of the system,

which is five to six times higher than the driving voltage frequency in this case.

At the triple point, where air and ink meet at the solid wall, we adopt the slipping contact line model dis-

cussed in detail in [32]. The contact angle h is the angle made by the air–liquid interface and the solid, mea-
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Fig. 5. Typical ink jet driving voltage.
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sured from the side of the liquid by approaching the contact line (i.e. the triple point) as close as possible. The

advancing critical contact angle ha and receding critical contact angle hr are the maximum and minimum

contact angles for the triple point to stay. The velocity vB is the tangential velocity of the point on the inter-
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face at 0.5 lm from the triple point. The triple point is allowed to move toward the air side if h P ha and
vB > 0. The triple point is allowed to move toward the liquid side if h 6 hr and vB < 0. If the triple point

is not allowed to move, the boundary condition at the solid wall is the no-slip condition. If the triple point

is allowed to move, the no-slip condition in a close vicinity of the triple point is switched to the free slip con-

dition. For Epson�s dye-based ink and print head nozzle wall, ha and hr are about 70� and 20�.
3. Numerical algorithms

In this paper, the superscript n (or n + 1) denotes the time step, i.e. un = u(t = tn) and so on. Suppose we

have quantities un, pn� 1/2, /n. The purpose is to obtain un+1, pn+1/2, /n+1 from the governing equations

(16). Note that the pressure is retarded in time (by half a time step) in the following coupled second-order

level set projection scheme.
3.1. Temporal discretization

The boundary condition on the nozzle wall is given from the contact model. The inflow pressure pn+1/2 is

given by the equivalent circuit.
3.1.1. Level set update

The level set is updated first by
/nþ1 ¼ /n � Dt
J
½�u � rN/�nþ1=2: ð19Þ
The algorithm for the evaluation of the time-centered advection term ½�u � rN/�nþ1=2 will be explained

later in this paper. Once /n+1 is obtained, we compute /n+1/2 by
/nþ1=2 ¼ 1
2
ð/n þ /nþ1Þ: ð20Þ
3.1.2. Semi-implicit algorithm for Navier–Stokes equations

Following [29,7,31], the temporal discretization is 2nd-order explicit for the advection term and semi-

implicit for the viscosity term. In this scheme, the preliminary velocity u* is first solved from the

Navier–Stokes equations by
u� � un

Dt
þ J�1½ð�u � rNÞu�nþ1=2 ¼�

g

qð/nþ1=2ÞJ
TTrNpn�1=2þ ðViscosity termÞnþ� þ ðSurface tensionÞnþ1=2;

ð21Þ

where
ðViscosityÞnþ� ¼ 1

qð/nþ1=2ÞRe
J�1rN � ½g2J�1lð/nþ1=2ÞðTTTrNu

nþ� þðTTTrNu
nþ�ÞTÞ��2lð/nþ1=2Þunþ�

r2
er

( )

ð22Þ
and
unþ� ¼ 1
2
ðun þ u�Þ: ð23Þ
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Since the preliminary velocity u* appears at both sides of (21), we have to invert the viscosity term to

solve for u* in each time step.

We apply a second-order explicit Godunov scheme for the advection term and the central difference for

the viscosity term in (21), which will be explained later. We note that we use the time-centered level set

/n+1/2, which is obtained explicitly, for the evaluation of the viscosity term, and hence the viscosity term
is not truly semi-implicit.

3.1.3. Projection for un+1

In order to project the whole velocity and to obtain the whole pressure, the preliminary velocity is

replaced by
u�  u� þ gDt

qð/nþ1=2ÞJ
TTrNpn�1=2: ð24Þ
Since the FEM projection is used in our work, the regular projection equation is used
unþ1 ¼ u� � Dt

qð/nþ1=2Þ
rpnþ1=2: ð25Þ
Taking the divergence and noting that $ Æ un+1 = 0, we have
r � u� ¼ r � Dt

qð/nþ1=2Þ
rpnþ1=2

 !
: ð26Þ
The projection equation is elliptic. It reduces to a Poisson�s equation if the density ratio q(/n+1/2) is a

constant. To facilitate code implementation, the following finite element formulation is used
Z
X
u� � rw dx ¼

Z
X

Dt

qð/nþ1=2Þ
rpnþ1=2 � rw dxþ

Z
C1

wuBC � n dS; ð27Þ
where w is the weight function, C1 denotes all the boundary with prescribed inflow or outflow velocity uBC.
It is easy to verify using the divergence theorem that (27) implies (26) and the boundary condition at C1
Dt

qð/nþ1=2Þ
opnþ1

on
¼ ðu� � uBCÞ � n: ð28Þ
In this work, the weight function is chosen to be piecewise bilinear and the velocity u* is taken as con-

stant in each cell. After the pressure pn+1/2 is solved from Eq. (27), the velocity field un+1 can be obtained by

(25).
In our ink jet simulation, only the inflow pressure and outflow pressure are given. There is no prescribed

inflow or outflow velocity. Hence the second term on the right hand side of (27) vanishes.

We employ the multigrid-preconditioned conjugate gradient method (MGPCG) to solve the linear

system resulting from the finite element projection and that from the MAC projection (see Section

3.2.2). The preconditioner is a single multigrid V-cycle. The multicolor Gauss–Seidel relaxation is used

as the smoother at each level except the bottom level, where the conjugate gradient method is used.
3.2. Spatial discretization

3.2.1. The quadrilateral grid

As shown in Fig. 7, the velocity components uni;j and the level set /n
i;j are located at cell centers, and the

pressure pni;j at grid points. The time-centered edge velocities and level set (i.e., the ‘‘predictors’’), such as

u
nþ1=2
iþ1=2;j, /

nþ1=2
iþ1=2;j, are at the middle point of each edge.
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The transformation X = U(N) is such that the grid in the computational space is composed of unit

squares, i.e. the grid in the computational space has Dn = Dg = 1, and the quadrilateral grid in the physical

space is body-fitted. The coordinates of cell centers in the physical space are
1
4
ðX i�1=2;j�1=2 þ X i�1=2;jþ1=2 þ X iþ1=2;j�1=2 þ X iþ1=2;jþ1=2Þ: ð29Þ
Differences of the grid points are used to define the elements of the transformation matrix at cell centers.

As an example, we have that
ðX nÞi;j ¼ 1
2
ðX iþ1=2;jþ1=2 � X i�1=2;jþ1=2 þ X iþ1=2;j�1=2 � X i�1=2;j�1=2Þ: ð30Þ
3.2.2. The advection term

The algorithm for the advection terms is based on the unsplit, second-order Godunov type upwind

method introduced by Colella [12], see also Colella [11]. It is a cell-centered predictor-corrector scheme.

In the predictor step, we extrapolate the velocity and level set in space and time to obtain their cell edge

values at tn+1/2. In the corrector step, we compute the Godunov upwind fluxes which are then differenced

to obtain an approximation to the advection terms.

Predictor: For the predictor, we use Taylor�s series to extrapolate the velocity and level set at tn to obtain

their cell edge values at tn+1/2. The partial derivative with respect to time in the extrapolation is substituted

by the Navier–Stokes equations or by the level set convection equation. There are two extrapolated veloc-
ities and level sets for each cell edge. For example, for the cell edge between cells i, j and i+1, j, one can

extrapolate from the left and have
u
nþ1=2;L
iþ1=2;j ¼ uni;j þ

1

2
unn;i;j þ

Dt
2
unt;i;j ¼ uni;j þ

1

2
� Dt
2J i;j

�uni;j

� �
unn;i;j �

Dt
2J i;j
ð�vugÞni;j þ

Dt
2
Fn

i;j; ð31Þ
where
Fn
i;j ¼ � g

qð/ÞJ rNp þ ðViscosity termÞ þ ðSurface tensionÞ
� �n

i;j

ð32Þ
and extrapolate from the right to produce
u
nþ1=2;R
iþ1=2;j ¼ uniþ1;j �

1

2
unn;iþ1;j þ

Dt
2
unt;iþ1;j

¼ uniþ1;j �
1

2
þ Dt
2J iþ1;j

�uniþ1;j

� �
unn;iþ1;j �

Dt
2J iþ1;j

ð�vugÞniþ1;j þ
Dt
2
Fn

iþ1;j: ð33Þ
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We use the monotonicity-limited 2nd-order central difference for the evaluation of the normal slopes, i.e.

unn;i;j and unn;iþ1;j in this case. The limiting is done on each component of the velocity at tn separately. The

transverse derivative terms ð�vugÞni;j and ð�vugÞ
n
iþ1;j are evaluated by the simple upwind difference.

Corrector: As was noted by Bell et al. [5], �unþ1=2iþ1=2;ju
nþ1=2
iþ1=2;j represents the flux of un+1/2 through cell edge

i + 1/2,j, if we let
ðX gÞiþ1=2;j ¼ X iþ1=2;jþ1=2 � X iþ1=2;j�1=2 ð34Þ
in the calculation of the transformed convection velocity �unþ1=2iþ1=2;j. Similarly, �vnþ1=2i;jþ1=2u
nþ1=2
i;jþ1=2 is the flux of un+1/2

through cell edge i,j + 1/2, if
ðX nÞi;jþ1=2 ¼ X iþ1=2;jþ1=2 � X i�1=2;jþ1=2: ð35Þ
These suggest the finite volume-type differencing for the corrector given by Bell et al. [5]. The obtained
cell edge convection velocities are, in general, not divergence-free. In this work, we use an intermediate

MAC projection to make all the normal advection velocities divergence-free. Suppose q is a function which

is smooth enough and ue are the edge convection velocities. We want
ue � 1

qð/nÞrq ð36Þ
to be divergence-free. By taking the divergence of (36), we have, in the physical space,
r � 1

qð/nÞrq
� �

¼ r � ue: ð37Þ
In the computational space, the above MAC projection equation is transformed as
rN � �ue ¼ rN �
g2

qð/nÞJ TT
TrNq

� �
: ð38Þ
The boundary conditions for q are similar to those for the pressure. At the inflow or outflow, if a pres-

sure is given, we use
q ¼ DtDpBC; ð39Þ

where DpBC is the increment of the boundary pressure. If a velocity is prescribed, we have
oq
on
¼ n � ½ue � uBCðtnþ1=2Þ�: ð40Þ
The discretization of (38) can be easily done by a finite volume type differencing. We observe that �uiþ1=2;j
(or �viþ1=2;j) is a flux through the edge i + 1/2, j (or i, j + 1/2) if (34) (or (35)) is used to define the metric at the
mid point of cell edges. Hence (38) is discretized as
�uiþ1=2;j � �ui�1=2;j þ �vi;jþ1=2 � �vi;j�1=2 ¼Miþ1=2;j �Mi�1=2;j þMi;jþ1=2 �Mi;j�1=2; ð41Þ
where
Miþ1=2;j ¼
g2

qð/nÞJ TT
TrNq

� �
iþ1=2;j

ð42Þ
with Mi�1=2;j, Mi;jþ1=2, and Mi;j�1=2 defined similarly. In (42), the Jacobian Ji+1/2,j and the metric Ti+1/2,j are

calculated using (34). The gradient is by central difference.

After q is solved, we replace the edge advective velocities by
�ue  �ue � g2

qð/nÞJ TT
TrNq: ð43Þ
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We have two comments here. First, for ink jet simulations in this work, the inflow pressure calculated by

the equivalent circuit is used to drive the coupled level set projection code at each time step. The code solves

the governing equations and feeds back the ink flow rate to the equivalent circuit, which then calculates a

new inflow pressure for the next time step. Since pressure instead of velocity is given at the inflow, the veloc-

ity predictors at the inflow and outflow are simply extrapolated from the interior; they are also not upwin-
ded in the corrector step. This dilemma does not go away if the inflow velocity is prescribed by the

equivalent circuit. Since the actuator first pulls the ink back and then pushes to fire a droplet, the inflow

velocity is negative at the beginning of each droplet ejection. The upwind direction is at outflow, where

no velocity information is available.

Second, since geometry scales considered in this work are very small, the time step is dominated by the

viscosity constraint (see 3.3). That is to say, both Dt and DpBC are proportional to the square of mesh size.

Hence DtDpBC is negligible and can be replaced by a homogeneous boundary condition in the MAC

projection.

3.2.3. The viscosity term

The discretization of the viscosity term (13) is done using standard central differences. For example, at

cell i, j on the computational grid, the first part at the right hand side of (13) is discretized as
J�1rN � ½g2J�1lð/ÞðTTTrNuÞ� ¼
1

J i;j
ðLiþ1=2;j �Li�1=2;j þLi;jþ1=2 �Li;j�1=2Þ; ð44Þ
where
Liþ1=2;j ¼ ½g2J�1lð/ÞðTTTrNuÞ�iþ1=2;j ð45Þ
with Li�1=2;j, Li;jþ1=2, and Li;j�1=2 defined similarly. In (45), the Jacobian, transformation matrix, relative
viscosity, and velocity gradient at cell edge are calculated by averaging or central difference, namely
J iþ1=2;j ¼ ðJ i;j þ J iþ1;jÞ=2; T iþ1=2;j ¼ ðT i;j þ T iþ1;jÞ=2;
ðlð/ÞÞiþ1=2;j ¼ ðlð/iþ1;jÞ þ lð/i;jÞÞ=2;

ðrNuÞiþ1=2;j ¼
uiþ1;j � ui;j viþ1;j � vi;j
uiþ1;jþ1�uiþ1;j�1þui;jþ1�ui;j�1

4

viþ1;jþ1�viþ1;j�1þvi;jþ1�vi;j�1
4

" #
:

ð46Þ
3.2.4. The surface tension term

The surface tension term is also discretized using standard central differences. For example, the diver-

gence in (15) is discretized as
rN � gT
TTrN/

jTTrN/j

� �
¼Kiþ1=2;j �Ki�1=2;j þKi;jþ1=2 �Ki;j�1=2; ð47Þ
where
Kiþ1=2;j ¼ gT
TTrN/

jTTrN/j

� �
iþ1=2;j

ð48Þ
with Ki�1=2;j, Ki;jþ1=2, and Ki;j�1=2 defined similarly. Again, the velocity gradient and metric at cell edge are

calculated by central difference or by averaging.



240 J.-D. Yu et al. / Journal of Computational Physics 206 (2005) 227–251
3.3. Interface thickness and time step

Because of the numerical difficulty caused by the Dirac delta function and by the sharp change of q and l
across the free surface, the Heaviside and Dirac delta functions are replaced by smoothed functions (see

Sussman et al. [27] and Yu et al. [32]). The interface thickness is 2�, where the parameter � is related to
the mesh size by � ¼ a=2ðDr þ DzÞ. The thickness of the interface reduces as we refine the mesh. Nonethe-

less, for any numerically practical choices, the interface will necessarily have some smearing. For the con-

vergence study and simulations in Sections 5.1–5.3, a is set to be 2. For the droplet ejection and landing

simulation in Section 5.4, a = 3.

The time step constraint is determined by the CFL condition, surface tension, viscosity, and total accel-

eration. The constraint is given by (3.36) in Yu et al. [32], where Fn is defined by (32) for this work.
4. Level set re-initialization

To correctly capture the interface and accurately obtain the surface tension term, the level set needs to be

maintained as a signed distance function to the interface. We re-initialize the level set as signed distance

every few time steps using the combined bicubic interpolation and Fast Marching Method. The idea was

proposed by Chopp [9]. We modify and extend it to quadrilateral grids.

4.1. Bicubic interpolation

For the central cell in Fig. 8, we would like to construct a local bicubic interpolation function f(r,z) from

which we can accurately solve for the zero level. A bicubic function is
f ðr; zÞ ¼
X3
m¼0

X3
n¼0

am;nrmzn ð49Þ
which satisfies
(i,j) (i+1,j) 

(i+1,j+1) 
(i,j+1) 

(i,j-1) 
(i+1,j-1) 

(i-1,j) 

(i-1,j-1) 

(i-1,j+1) 

(i-1,j+2) 
(i,j+2) (i+1,j+2) 

(i+2,j) 

(i+2,j+1) 

(i+2,j+2) 

(i+2,j-1)

Fig. 8. Grids for level set.
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fk;l ¼ ½f ðr; zÞ�k;l ¼ /k;l;

of
or

� �
k;l

¼ o/
or

� �
k;l

;

of
oz

� �
k;l

¼ o/
oz

� �
k;l

;

o2f
oroz

� �
k;l

¼ o2/
oroz

� �
k;l

;

ð50Þ
where
k ¼ i; iþ 1; l ¼ j; jþ 1: ð51Þ

Note that there are 16 coefficients to decide in the bicubic interpolation function f and there are exactly

16 conditions in (50).

To obtain the values of ðo/
or Þk;l, ð

o/
oz Þk;l, and ð

o2/
or oz Þk;l on the quadrilateral mesh, one has to use the metric

matrix and the Jacobian associated with the mesh
o/
or

o/
oz

� �
¼ J�1TT

o/
on

o/
og

 !
: ð52Þ
So, for example, at the grid point (i,j) in Fig. 8, the first-order derivatives are
o/
or

o/
oz

� �
i;j

¼ J�1i;j T
T
i;j

o/
on

o/
og

 !
i;j

; ð53Þ
where
o/
on

� �
i;j

¼ ð/iþ1;j � /i�1;jÞ=2;

o/
og

� �
i;j

¼ ð/i;jþ1 � /i;j�1Þ=2;

TT
i;j ¼

z;g �z;n
�r;g r;n

� �
i;j

;

J i;j ¼ ðr;nz;g � r;gz;nÞi;j:

ð54Þ
The second-order derivative is
o2/
oroz

¼ ð/;rÞ;nn;z þ ð/;rÞ;gg;z ¼ /;nnn;rn;z þ /;ngðn;zg;r þ n;rg;zÞ þ /;ggg;rg;z; ð55Þ
where, at (i,j),
/;nn ¼ /iþ1;j � 2/i;j þ /i�1;j;

/;gg ¼ /i;jþ1 � 2/i;j þ /i;j�1;

/;ng ¼ ð/iþ1;jþ1 � /i�1;jþ1 � /iþ1;j�1 þ /i�1;j�1Þ=4:
ð56Þ
For the level set re-initialization using bicubic interpolation, one has to interpolate in all the cells that the

zero level passes through and then solve for the new level set values for the four nodes of each of those cells.

If the hatched cell contains a segment of the zero level, one just does the interpolation using (49)–(56). The
remaining job is to solve the new distance for (i,j), (i + 1,j), (i,j + 1), (i + 1,j + 1).
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Let x0 be a node of the hatched cell where we would like to compute the distance to the zero level. Let y
be a point on the zero level nearest to x0. We have
f ðyÞ ¼ 0; rf ðyÞ � ðx0 � yÞ ¼ 0: ð57Þ

To solve (57), the standard Newton�s method can be used. Chopp [9] suggested the following alternative:
d1 ¼ �f ðxkÞ rf ðxkÞ
rf ðxkÞ � rf ðxkÞ ;

xkþ1=2 ¼ xk þ d1;

d2 ¼ ðx0 � xkÞ � ðx
0 � xkÞ � rf ðxkÞ
rf ðxkÞ � rf ðxkÞ rf ðx

kÞ;

xkþ1 ¼ xkþ1=2 þ d2;

ð58Þ
where k = 0,1,2, . . . The iteration is continued until
j d1j2þ j d2j2 < 10�6DrDz: ð59Þ

The obtained closest point y should lie in the quadrilateral cell defined by nodes (i,j), (i + 1,j), (i,j + 1),

(i + 1,j + 1). If not, the obtained distance value is disregarded.

4.2. Fast Marching Method

The Fast Marching Method (see [22]) is a Dijkstra-like finite difference scheme for computing the solu-

tion to the Eikonal equation. It is an OðN logNÞ method, where N is the number of points in the compu-

tational domain, and has been used in a wide variety of applications (see [23] for a review of some of the

applications, as well as [30] for a related Dijkstra-like method and [25] for extensions of these approaches to

more general static Hamilton–Jacobi equations.)

In particular, Fast Marching Methods have been extended to triangular grids [15,24]. To be able to use a
version of the triangular Fast Marching Method, we change our quadrilateral grid to a triangular grid as in

Fig. 9, where all the triangles are acute triangles. To start the Fast Marching Method to complete the reini-
Fig. 9. The triangular grid for fast marching.
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tialization, all nodes whose distance values are calculated by the bicubic interpolation are placed in the set

of accepted points. Details of the triangular Fast Marching Method can be found in [15,24].
5. Numerical examples and discussions

5.1. Convergence study

For a convergence check of the code for ink jet simulations, we considered a typical nozzle as in Fig. 1.

The diameter is 25 lm at the opening and 49.5 lm at the bottom. The length of the nozzle opening part,

where the diameter is 25 lm, is 25 lm. The slant part is 55 lm and the bottom part is 7.5 lm.

The inflow pressure is determined by an equivalent circuit, which simulates the ink in the supply channel

considering the effect of the ink cartridge, supply channel, vibration plate, and PZT actuator for given dy-
namic voltage. We assumed that the input voltage is given by Fig. 5, where the peak voltages are ±10.96 V.

The corresponding inflow pressure is as shown in Fig. 6. The outflow pressure at the top of the solution

domain is set to zero.

The solution domain was chosen to be {(r,z)j0 6 r 6 32 lm, 0 6 z 6 501 lm}. The critical contact angles

are 70� for advancing and 20� for receding. The initial meniscus is assumed to be flat and 2.5 lm under the

nozzle opening.

For the purpose of normalization, we chose the nozzle opening diameter (25 lm) to be the length scale

and 6 m/s to be the velocity scale. The normalized solution domain is hence {(r,z)j0 6 r 6 1.28,
0 6 z 6 20.04}. Since the density, viscosity, and surface tension of Epson�s dye-based ink are approximately
Table

The tim

Mesh n

Time t

Table

Drople

Mesh n

7.986

8.994

10.002

10.986

12.000

13.002
q1 ¼ 1070 kg=m3; l1 ¼ 3:7� 10�3 kg=m s; r ¼ 0:032 kg=s2; ð60Þ

we have the following non-dimensional parameters
Re ¼ 43:38; We ¼ 30:09: ð61Þ

The density and viscosity of air used in the study are
q2 ¼ 1:225 kg=m3; l2 ¼ 1:77625� 10�3 kg=m s: ð62Þ

To check the convergence of our code, we list in Tables 1–3 the time of droplet pinch off from the menis-

cus, droplet head velocity, and droplet volume obtained from our code using various meshes. All of these

listed data are dimensionless. It is seen that the 32 · 432 mesh does not conserve mass well. The level set
re-initialization using bicubic interpolation tends to gain mass on such coarse mesh.
1

e to pinch off by various meshes

umber 32 · 432 64 · 864 96 · 1296 128 · 1728

o pinch off 7.3020 7.5780 7.6251 7.6245

2

t head velocities by various meshes

umber, t 32 · 432 64 · 864 96 · 1296 128 · 1728

1.3017 1.2804 1.2890 1.2913

1.2979 1.3147 1.3379 1.3467

1.3739 1.3840 1.4041 1.4092

1.3783 1.3437 1.3608 1.3628

1.3357 1.3045 1.3174 1.3217

1.3197 1.2986 1.3134 1.3199



Table 3

Droplet volumes by various meshes

Mesh number, t 32 · 432 64 · 864 96 · 1296 128 · 1728

7.986 0.7984 0.7867 0.7913 0.7861

8.490 0.7747 0.7881 0.7920 0.7863

8.994 0.7675 0.7896 0.7925 0.7866

9.498 0.7767 0.7908 0.7930 0.7868

10.002 0.7877 0.7922 0.7935 0.7870
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5.2. Droplet ejection

Experimental results for the case considered are shown in Fig. 10. The nozzle is not shown; instead, we

show the position of nozzle exit at the lower edge of each of the six images. Because the droplet is small, the
droplet velocity is high, and the camera shutter speed is not infinitely fast, the images are a little blurred (We

note that exposure time for each image is in the order of one microsecond). The major droplet at t = 50 ls is
actually more like a sphere than it appears in the last image in Fig. 10. The figure shows that the ink droplet

leaves the nozzle sometime between t = 30 ls and t = 35 ls. Since the pinch off from the meniscus usually

happens somewhere inside the nozzle, we could not see it in the experiment. The average droplet size from

the experiment is 12.928 pico liters.

To compare with the experiment, simulation results from t = 25 ls to t = 50 ls, using the 64 · 864 quad-

rilateral mesh, are plotted in Fig. 11. The simulation shows the droplet pinches off at t = 32.83 ls, its tail
leaves the nozzle at t = 33.50 ls, and the droplet size is 12.292 pico liters. All of these are reasonable.

It is interesting to note that there is no visible difference between the quadrilateral grid result (Fig. 11)

and the uniform rectangular grid/obstacle cell result (Fig. 14 of [32]). We hence confirm that, for the case

considered, the latter approach is reasonably accurate even if it causes the ladder case pattern. With a 70�
advancing critical angle and a 20� receding critical angle, the nozzle wall is easy to wet but difficult to

un-wet. Although the contact point can move back and forth during droplet ejection, it never retreats to

the slant part of the nozzle. The fluid right next to the slant wall is always very slow whether the quadri-

lateral grid or uniform rectangular grid is used and the ladder case pattern is not crucial in the simulation. If
the nozzle wall is easy to un-wet, the ladder case pattern would most likely downgrade the accuracy of

simulations.
Fig. 10. Shape of the ink droplet at t = 25, 30, 35, 40, 45, 50 ls.



Fig. 11. Ejection of an ink droplet from simulation.
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5.3. Droplet landing

As a second numerical example, the landing of ink droplets on substrates of various wetting properties

was simulated. The ink droplet, flying at 7 m/s, is originally a sphere of diameter d0 = 25 lm. Two sub-

strates, hydrophobic (not easy to wet) and hydrophilic (easy to wet), were considered. The advancing

and receding critical contact angles for the hydrophobic substrate are 60� and 90� while the angles for

the hydrophilic substrate are 20� and 50�. A higher dynamic viscosity l1 = 4.5 · 10�3 kg/m s is used in

the simulation in order to compare with available experimental results. Otherwise the fluid properties
are the same as the droplet ejection. Simulation results using 64 · 64 meshes are plotted in Fig. 12 and

13, where the moment that the droplet touches the substrates is denoted as t = 0 ls and the number in

parentheses is the ratio of the maximum diameter to the original diameter.

We see from the results that the final shape of the droplet on substrate depends on the initial droplet

landing velocity, substrate material properties, and fluid material properties. For our case of a 7 m/s landing

ink droplet, the final shape, i.e. the height and width, strongly depends on the substrate property. In the

hydrophobic case, the droplet shape remains basically unchanged from t = 50 ls to t = 200 ls. In the hydro-

philic case, however, the droplet diameter increases from 1.75d0 to 1.93d0 in the same period. The final
shape is hence wider and shorter in the hydrophilic case. We also see that the droplet shape is not strongly

influenced by the wetting property of the substrates within the first 3 ls.
Experimental results of droplet landing [14] are in Fig. 14. These photos are side views so that the

shallow valley at the center of the droplet at t = 5 ls cannot be seen. We see that, for the hydrophobic case,

the droplet shape does not change between t = 50 ls and t = 200 ls. For the hydrophilic case, the diameter

increases from 1.36d0 at t = 50 ls to 1.68d0 at t = 200 ls. Compared with experiments, our simulation

results have a 15% larger diameter in both cases.

5.4. Droplet ejection and landing

For a third numerical example, we considered the ejection and landing of an ink droplet on a solid sub-

strate. The substrate is located 0.8 mm from the nozzle exit, which is roughly the actual distance from the
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Fig. 12. The landing of an ink droplet on a hydrophobic substrate.
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Fig. 13. The landing of an ink droplet on a hydrophilic substrate.
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Fig. 14. The experimentally observed landing of ink droplets on two different substrates.
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nozzle exit to the paper in an ink jet printer. We assumed that the material property of the substrate is the

same as the nozzle wall, that is to say they have the same critical contact angles. A slightly smaller ink

viscosity 3.5 · 10�3 kg/m s is used. The dynamic voltage is still like Fig. 5 except that the peak voltages

are reduced to ±10 V so that the droplet velocity would be roughly 7 m/s. The voltage is kept at zero after

65 ls. Simulation results using a 128 · 3136 quadrilateral grid and a smearing of 3.5 cells (a = 3.5) are plot-

ted in Figs. 15–17. The simulation takes about 86,000 time steps to finish. On a Windows XP workstation

with an Intel Xeon 2.8 GHz CPU and 1 GB 266 MHz ECC SDRAM, each time step takes about 9 s, for

which 50% of the CPU time is spent on the finite element projection, 30% on the MAC projection, 7% on
inverting the viscosity term.
t=0.µs t=5.µs t=10.µs t=30.µs t=50.µs t=70.µs t=90.µs t=110.µs

Fig. 15. An ink droplet fired toward an end substrate.



Fig. 16. Landing of the major ink droplet on the substrate.
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We see that the droplet pinches off earlier than the previous case due to the slightly smaller ink viscosity

and different peak voltage used in this simulation. The droplet tail is about to leave the nozzle exit at

t = 30 ls. The long droplet separates into a bigger major droplet and a long satellite at about t = 35 ls
(the moment is not shown), which is also earlier than the previous case. Due to the surface tension of

ink, the satellite gradually changes to almost a spherical ball. The major droplet flies at 7.1 m/s while the

satellite is slower at 5.6 m/s. The major droplet, which at the moment is 13.0 lm in radius (9.25 pico liters

in volume), hits the end substrate at t = 119.6 ls. It splashes to the sides while some energy dissipates by

viscosity and the rest is stored as surface tension potential. The latter part finally releases so that the center
of the droplet rises, oscillates, and comes to a rest. The slower satellite, which is 7.87 lm in radius (2.04 pico

liters) hits the major droplet on the substrate at about t = 160 ls. A tiny air bubble is formed during the

merge.

To verify the mass conservation performance of the coupled level set projection method and the bicubic

interpolation/fast marching re-initialization for such a lengthy simulation, we also calculate the droplet vol-

ume at different moments. At t = 30 ls, when the droplet tail is about to leave the nozzle, it is 11.083 pico

liters. At t = 119.6 ls, when the major droplet is hitting the end substrate, the total volume (including the

major droplet and the satellite) is 11.303 pico liters. The mass difference is 1.99%, which is reasonably good
considering that the code completes more than 42,000 time steps and does more than 1000 level set re-

initializations during this period.



136µs 142µs 148µs 154µs 160µs 166µs 172µs 178µs

Fig. 17. The slower satellite droplet hits the major droplet on the substrate.
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Finally it is interesting to see that the meniscus is not flat at the end of simulation t = 178 ls (see Fig. 18).
The inflow pressure is p = �160 N/m2. This negative pressure is balanced by the small surface tension so

that the ink does not leak when the print head is not printing.
6. Analysis and future work

A coupled level set-projection method on body-fitted quadrilateral grids has been developed for piezo-

electric ink jet simulations. To improve the mass conservation performance of the method, a bicubic inter-

polation is combined with the Fast Marching Method for level set re-initialization on quadrilateral grids.

Numerical examples on code convergence, droplet ejection, and droplet landing are presented.

In all our simulations, we use a surface tension coefficient that has been statically measured, rather than
dynamically. This leads to some error in our simulation. A dynamically determined coefficient will be

larger, and will result in a shorter satellite tail; this will bring our simulation closer to experimental mea-

surements. Nonetheless, our droplet ejection simulation is quite accurate, and is being used in engineering

design.

Additional improvements will come from addressing two other issues. First, the nozzle wall does not

have a perfect 90� corner at the opening. Thus, the nozzle geometry is under resolved unless a very large

number of cells is used for the nozzle opening. Second, the slipping contact line model is not sophisticated



t=178.µs

Fig. 18. The meniscus at the end of simulation.
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enough. A better model should at least relate the slipping velocity to the difference between the contact

angle and critical angles.
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